species are common causes of human infection. These Gram-positive, encapsulated bacterial pathogens infect diverse anatomic spaces, leading to infections including skin and soft tissue infection, endocarditis, pneumonia, meningitis, sinusitis, otitis media, chorioamnionitis, sepsis, and even death. Risk for streptococcal infection is highest in low- and middle-income countries where micronutrient deficiency is common. Epidemiological data reveal that vitamin D deficiency is associated with enhanced risk of streptococcal infection and cognate disease outcomes. Additionally, vitamin D improves antibacterial defenses by stimulating innate immune processes such as phagocytosis and enhancing production of reactive oxygen species (oxidative burst) and antimicrobial peptides (including cathelicidin and lactoferrin), which are important for efficient killing of bacteria. This review presents the most recent published work that studies interactions between the micronutrient vitamin D, the host immune system, and pathogenic streptococci as well as comparisons with other relevant infection models.

Author