Cancer refers to a disease resulting from the uncontrolled division and growth of abnormal cells. Among different cancer types, breast cancer is considered as one of the most commonly diagnosed cancers. Herein, we explored the therapeutic effects of human amniotic mesenchymal stromal cells (hAMSCs) secretome on breast cancer cells (MDA-MB-231) through analyzing cell cycle progression.
We employed a co-culture system using 6-well Transwell plates and after 72 h, the cell cycle progression was evaluated in the hAMSCs-treated MDA-MB-231 cells through analyzing the expressions of RB, CDK4/6, cyclin D, CDK2, cyclin E, p16, p21, and p27 using quantitative real-time PCR (qRT-PCR) and western blot method. Cell proliferation, apoptosis, and cell cycle progression were checked using an MTT assay, DAPI staining, and flow cytometry.
Our results indicated that elevation of RB, p21, and p27 and suppression of RB hyperphosphorylation, p16, cyclin E, cyclin D1, CDK2, and CDK4/6 may contribute to inhibiting the proliferation of hAMSCs-treated MDA-MB-231 cells through cell cycle arrest in G1/S phase followed by apoptosis.
hAMSCs secretome may be an effective approach on breast cancer therapy through the inhibition of cell cycle progression.
© 2023. The Author(s), under exclusive licence to Federación de Sociedades Españolas de Oncología (FESEO).