Hepatitis-hydropericardium syndrome (HHS) caused by hypervirulent fowl adenovirus 4 (FAdV-4) have been causing great economic losses to Chinese poultry industry since 2015. Elucidation of the pathogenesis of FAdV-4 will lay solid foundation for developing attenuated FAdV-4 vaccine and vaccine vector. Our previous study has demonstrated that the increased virulence of hypervirulent FAdV-4 was associated with fiber-2 and hexon genes. However, the roles of fiber-1 and penton in virulence of FAdV-4 have never been elucidated. To further investigate the roles of the major structural proteins fiber-1 and penton in the virulence of hypervirulent FAdV-4, the fiber-1- and penton-replaced mutant viruses were constructed based on the FAdV-4 infectious clones of hypervirulent strain HNJZ using Redαβ recombineering techniques. The pathogenicity of the rescued viruses was evaluated in 3-week-old SPF chickens. Chickens infected with the rescued recombinant viruses carrying the fiber-1 or penton base gene from a nonpathogenic strain ON1 developed similar clinical signs to the natural hypervirulent FAdV-4 infection, including HHS-indicative gross lesions and histopathological changes in sick/dead chickens. Our results suggested that the increased virulence of hypervirulent FAdV-4 was independent of fiber-1 and penton. The detailed pathogenesis of FAdV-4 and the roles of fiber-1 and penton in the viral replication and infection process need to be further explored.Copyright © 2020. Published by Elsevier Ltd.
About The Expert
Ruxin Liu
Yuhan Zhang
Huifang Guo
Ning Li
Baiyu Wang
Kaiyue Tian
Zeng Wang
Xia Yang
Yongtao Li
Hailong Wang
Youming Zhang
Jun Fu
Jun Zhao
References
PubMed