MEF2D-fusion (M-fusion) genes are newly discovered recurrent gene abnormalities that are detected in approximately 5 % of acute lymphoblastic leukemia (ALL) cases. Their introduction to cells has been reported to transform cell lines or increase the colony formation of bone marrow cells, suggesting their survival-supporting ability, which prompted us to examine M-fusion-targeting drugs. To identify compounds that reduce the protein expression level of MEF2D, we developed a high-throughput screening system using 293T cells stably expressing a fusion protein of MEF2D and luciferase, in which the protein expression level of MEF2D was easily measured by a luciferase assay. We screened 3766 compounds with known pharmaceutical activities using this system and selected staurosporine as a potential inducer of the proteolysis of MEF2D. Staurosporine induced the proteolysis of M-fusion proteins in M-fusion (+) ALL cell lines. Proteolysis was inhibited by caspase inhibitors, not proteasome inhibitors, suggesting caspase dependency. Consistent with this result, the growth inhibitory effects of staurosporine were stronger in M-fusion (+) ALL cell lines than in negative cell lines, and caspase inhibitors blocked apoptosis induced by staurosporine. We identified the cleavage site of MEF2D-HNRNPUL1 by caspases and confirmed that its caspase cleavage-resistant mutant was resistant to staurosporine-induced proteolysis. Based on these results, we investigated another Food and Drug Administration-approved caspase activator, venetoclax, and found that it exerted similar effects to staurosporine, namely, the proteolysis of M-fusion proteins and strong growth inhibitory effects in M-fusion (+) ALL cell lines. The present study provides novel insights into drug screening strategies and the clinical indications of venetoclax.Copyright © 2020 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
About The Expert
Naoyuki Tange
Fumihiko Hayakawa
Takahiko Yasuda
Koya Odaira
Hideyuki Yamamoto
Daiki Hirano
Toshiyasu Sakai
Seitaro Terakura
Shinobu Tsuzuki
Hitoshi Kiyoi
References
PubMed