Dry eye disease (DED) is a multifactorial disease, and oxidative stress plays a crucial role in its pathogenesis. Recently, multiple studies have shown that upregulation of autophagy can protect the cornea from oxidative stress damage. The present study investigated the therapeutic effects of salidroside, the main component of Rhodiola crenulata, in both in vivo and in vitro dry eye models. The results showed that topical eye drop treatment with salidroside restored corneal epithelium damage, increased tear secretion, and reduced cornea inflammation in the DED mice. Salidroside activated autophagy through AMP-activated protein kinase (AMPK)-sirtuin-1 (Sirt1) signaling pathway, which promoted the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) and increased the expression of downstream antioxidant factors heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1). This process restored antioxidant enzyme activity, reduced reactive oxygen species (ROS) accumulation, and alleviated oxidative stress. The application of autophagy inhibitor chloroquine and AMPK inhibitor Compound C reversed the therapeutic efficacy of salidroside, validating the above findings. In conclusion, our data suggest that salidroside is a promising candidate for DED treatment.Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.