This study states that Current paradigms suggest that nitric oxide (NO) produced by endothelial cells (ECs) via endothelial nitric oxide synthase (eNOS) in the vessel wall is the primary regulator of blood flow and blood pressure. However, red blood cells (RBCs) also carry a catalytically active eNOS, but its role is controversial and remains undefined. This study aimed to elucidate the functional significance of red cell eNOS compared to EC eNOS for vascular hemodynamics and NO metabolism. We generated tissue-specific “loss-” and “gain-of-function” models for eNOS by using cell-specific Cre-induced gene inactivation or reactivation. We created two founder lines carrying a floxed eNOS (eNOSflox/flox) for Cre-inducible knock out (KO), as well as gene construct with an inactivated floxed/inverted exon (eNOSinv/inv) for a Cre-inducible knock in (KI), which respectively allow targeted deletion or reactivation of eNOS in erythroid cells (RBC eNOS KO or RBC eNOS KI mice) or endothelial cells (EC eNOS KO or EC eNOS KI mice). Vascular function, hemodynamics, and NO metabolism were compared ex vivo and in vivo. The EC eNOS KOs exhibited significantly impaired aortic dilatory responses to acetylcholine, loss of flow-mediated dilation (FMD), and increased systolic and diastolic blood pressure. RBC eNOS KO mice showed no alterations in acetylcholine-mediated dilation or FMD but were hypertensive.

Reference link- https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.120.049606

Author