The introduction of additive manufacturing (AM) technologies has profoundly revolutionized the implant manufacturing industry, with a particularly significant impact on the field of orthopedics. Electron Beam Melting (EBM) and Direct Metal Laser Sintering (DMLS) represents AM fabrication techniques with a pivotal role in the realization of complex and innovative structure starting from virtual 3D model data. In this study, Ti-6Al-4V and Co-Cr-Mo materials, developed by EBM (Ti-POR) and DMLS (Co-POR) techniques, respectively, with hydroxyapatite (Ti-POR + HA; Co-POR + HA) and type I collagen (Ti-POR-COLL; Co-POR-COLL) coatings, were implanted into lateral femoral condyles of rabbits. Osseointegration process was investigated by histological, histomorphometrical and microhardness evaluations at 4 and 12 weeks after implantation. Both Ti-6Al-4V and Co-Cr-Mo implants, with or without HA and COLL coatings, demonstrated good biocompatibility. As expected, HA coating hastened bone-to-implant contact (BIC) process, while collagen did not significantly improved the osseointegration process in comparison to controls. Regarding newly trabecular bone formation (B.Ar/T.Ar), Co-POR presented the highest values, significantly different from those of Co-POR-COLL. Over time, an increase of BIC parameter and a decrease of B.Ar/T.Ar were detected. Higher mineral apposition rate was observed for Ti-POR and Co-POR in comparison to Ti-POR-COLL and Co-POR-COLL, respectively, at 12 weeks. The same behavior was found for bone formation rate between Co-POR and Co-POR-COLL at 12 weeks. In conclusion, the AM materials guarantee a good osseointegration and provide a suitable environment for bone regeneration with the peculiarity of allowing personalized and patient-specific needs customization to further improve the long-term clinical outcomes.Copyright © 2020 Elsevier Ltd. All rights reserved.
About The Expert
Silvia Brogini
Maria Sartori
Gianluca Giavaresi
Patrizio Cremascoli
Fabio Alemani
Davide Bellini
Lucia Martini
Melania Maglio
Stefania Pagani
Milena Fini
References
PubMed