Ovarian cancer is an aggressive disease that affects about 300,000 patients worldwide, with a yearly death count of about 185,000. Following surgery, treatment involves adjuvant or neoadjuvant administration of taxane with platinum compounds cisplatin or carboplatin, which alkylate DNA through the same chemical intermediates. However, although platinum-based therapy can cure patients in a number of cases, a majority of them discontinues treatment owing to side effects and to the emergence of resistance. In this study, we focused on resistance to cisplatin and investigated whether metabolic changes could be involved. As models, we used matched pairs of cisplatin-sensitive (SKOV-3 and COV-362) and cisplatin-resistant (SKOV-3-R and COV-362-R) human ovarian carcinoma cells that were selected in vitro following exposure to increasing doses of the chemotherapy. Metabolic comparison revealed that resistant cells undergo a shift towards a more oxidative metabolism. The shift goes along with a reorganization of the mitochondrial network, with a generally increased mitochondrial compartment. More functional mitochondria in cisplatin-resistant compared to cisplatin-sensitive cells were associated to enzymatic changes affecting either the electron transport chain (SKOV-3/SKOV-3-R model) or mitochondrial coupling (COV-362/COV-362-R model). Our findings further indicate that the preservation of functional mitochondria in these cells could be due to an increased mitochondrial turnover rate, suggesting mitophagy inhibition as a potential strategy to tackle cisplatin-resistant human ovarian cancer progression. Implications: Besides classical mechanisms related to drug efflux and target modification, we report that preserving functional mitochondria is a strategy used by human ovarian cancer cells to resist to cisplatin chemotherapy.
Copyright ©2020, American Association for Cancer Research.

Author