The aim of this retrospective cohort study was to evaluate the long-term clinical and radiographic outcomes and survival of teeth in periodontal regenerative treatment of intrabony defects using combined enamel matrix protein derivative (EMD) and deproteinized porcine bone mineral (DPBM) compared to EMD alone.
A total of 333 intrabony defects in 176 patients (mean age: 54.7 ± 8.9 years) were followed-up for 58.6 ± 11.2 (range, 25-78) months after periodontal regenerative treatment. Changes in clinical (pocket probing depth and clinical attachment level) and radiographic (defect depth and defect width) parameters were analyzed using serial periapical radiographs. Kaplan-Meier and multivariate Cox proportional-hazards regression analyses for tooth loss were also performed.
Compared to periodontal surgery with EMD alone with a mean follow-up of 5 years, combined EMD and DPBM showed significantly better gain in clinical attachment level (EMD and DPBM: 2.8 ± 2.3 mm vs. EMD alone: 2.2 ± 2.2 mm) and reduction in probing pocket depth (EMD and DPBM: 2.8 ± 1.8 mm vs. EMD alone: 2.3 ± 1.8 mm), defect depth (EMD and DPBM: 2.5 ± 2.4 mm vs. EMD alone: 2.0 ± 2.4 mm) and defect width (EMD and DPBM: 0.6 ± 1.0 mm vs. EMD alone: 0.2 ± 1.3 mm). The overall survival rates of the teeth were 91.48% and 95.20% in the patient- and tooth-based analyses, respectively, showing no statistically significant difference.
Within the limitations of the current study, combined EMD and DPBM offered additional clinical and radiographic benefits over a mean of 5 years compared to EMD alone. However, tooth loss did not differ significantly between the two groups.
Compared to EMD alone, combined EMD and DPBM for intrabony defects has additional clinical advantages; however, patient- and tooth-related risk factors must be considered when performing periodontal regenerative surgery.
© 2023. The Author(s).