This study aimed to observe the molecular mechanism underlying the effect of tumor necrosis factor-inducible protein 6 (TSG-6) on the bone morphogenetic protein-4 (BMP-4)/drosophila mothers against decapentaplegic protein(Smad) signaling pathway and mineralization of dental pulp stem cells (DPSCs) in inflammatory environment. Normal and TSG-6 gene-modified DPSCs were cultured in a mineralization-inducing fluid containing 0 or 50 ng/mL TNF-α separately. The real-time polymerase chain reaction was used to measure the expression of TSG-6 and odonto/osteogenic differentiation makers at the mRNA level. Western blot analysis and cellular immunofluorescence were used to observe the odonto/osteogenic differentiation of DPSCs and the variation of BMP-4/Smad signaling pathway at the protein level. Moreover, normal and modified DPSCs combined with hydrogel were used for subcutaneous implantation in nude mice. The levels of odonto/osteogenic markers and BMP-4/Smad-related proteins were lower in Ad-TSG-6 DPSCs than in normal DPSCs after mineralization induction, and were higher in TSG-6-RNAi DPSCs than in normal DPSCs after culturing with mineralization-inducing fluid containing 50 ng/mL TNF-α. The subcutaneous transplantation of normal and modified DPSCs combined with hydrogel in nude mice demonstrated that normal DPSCs were formed in the tissue containing collagen. The tissue formed by Ad-TSG-6 DPSCs was highly variable, and the cells were very dense. We can know that TNF-α regulates the expression of TSG-6, thereby inhibiting the BMP-4/Smad signaling pathway and the odonto/osteogenic differentiation ability of DPSCs.Copyright © 2020 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.
About The Expert
Ying Wang
Shuai Yuan
Jingjing Sun
Yuping Gong
Sirui Liu
Runying Guo
Wei He
Peng Kang
Rui Li
References
PubMed