Low intensity pulsed ultrasound (LIPUS) may have utility for noninvasive treatment of discogenic lower back pain through stimulating, remodeling and accelerating healing of injured or degenerated intervertebral disc (IVD) tissues. This study investigates the feasibility of delivering LIPUS to lumbar IVDs between L2 and S1 spine vertebra using a planar extracorporeal phased array (8 x 8 cm, 1024 elements, 500 kHz). Three 3D anatomical models with heterogenous tissues were generated from patient CT image sets and used in the simulation-based analysis. Time-reversal acoustic modeling techniques were applied to optimize posterior-lateral placement of the array with respect to the body to facilitate energy deposition in discrete target regions spanning the annulus fibrosus and central nucleus of each IVD. Forward acoustic and biothermal simulations were performed with time-reversal optimized array placements and driving amplitude/phase settings to predict LIPUS intensity distributions at target sites and to investigate off-target energy deposition and heating potential. Simulation results demonstrate focal intensity gain of 5-168 across all IVD targets and anatomical models, with greater average intensity gain (> 50) and energy localization in posterior, posterolateral, and lateral target sites of IVDs. Localized LIPUS delivery was enhanced in thinner patient anatomies and in the high lumbar levels (L2-L3 and L3-L4). Multiple amplitude/phasing illumination patterns could be sequenced at a fixed array position for larger regional energy coverage in the IVD. Biothermal simulations demonstrated that LIPUS-appropriate exposures of 100 mW/cm2 ISPTA to the target disc region would result in < 1 °C global peak temperature elevation for all cases. Hence, simulations suggest that spatially-precise extracorporeal delivery of therapeutically-relevant LIPUS doses to discrete regions of lumbar IVDs is feasible and may be useful in clinical management of discogenic back pain.© 2020 Institute of Physics and Engineering in Medicine.
About The Expert
Matthew Adams
Jeffrey C Lotz
Chris Diederich
References
PubMed