Rheumatoid arthritis (RA) is characterized by a deficiency in regulatory T cells (Treg), which play a crucial role in immune regulation. While conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) are widely used, there remains a challenge as efficacy varies among patients. In this genome-wide association study (GWAS) involving 410 RA patients, rs9373441 emerged as the most significantly linked single-nucleotide polymorphism (SNP) to csDMARDs response. This non-coding variant functions as a cis-acting regulatory element within the UTRN gene, which is associated with cortical erosion and osteoporosis. Particularly, individuals with the TT allele at rs9373441 exhibited a more favorable response, characterized by a significant increase in FOXP3 + Treg and Type 1 regulatory T cells (Tr1) (p = 0.04, 0.02) and a decrease in Effector T helper cells (Effector Th) (p = 0.03). The GATA3-GCM2-PTH and GATA3-FOXO1-FOXP3 pathways were implicated. RNA-sequencing (RNA-seq) analysis revealed increased expression levels of UTRN, PTH2R, FOXO1, and FOXO3 in good and moderate responders (p = 0.01, 0.03, 0.0005, and 0.02). Notably, the change in FOXP3 + Treg and Tr1 was positively correlated with UTRN expression (both p = 0.03). These findings underscore the critical link between rs9373441 and the response to csDMARDs, empowering clinicians to tailor treatments for enhanced outcomes in patients with RA.Copyright © 2023. Published by Elsevier B.V.