A novel, sensitive and selective electrochemical sensor based on epitope-imprinted polydopamine (PDA) was developed for ovalbumin (OVA) detection. Molecularly imprinted polydopamine was synthesized on an AuNP-coated screen-printed carbon electrode (SPCE) via electropolymerization in the presence of OVA IgE-binding epitope as the template. Key process parameters including template concentration, electropolymerization cycle, pH, time required for template removal and rebinding were optimized. Electrochemical detection of OVA was performed by differential pulse voltammetry (DPV) in 5 mM KFe(CN) and 0.1 M KCl as the supporting electrolyte. Under optimized conditions, the sensor demonstrated excellent sensitivity toward OVA with linear range from 23.25 to 232.50 nM (1 to 10 ppm), limit of detection (LOD) of 10.76 nM (0.46 ppm), and limit of quantification (LOQ) of 35.87 nM (1.54 ppm). The sensor also exhibited good selectivity against other proteins such as human serum albumin (HSA), bovine serum albumin (BSA), and lysozyme (LYZ). OVA in wine samples was detected with RSD of 5.63-10.82%, and recovery percentage of 104.74-105.96%. The developed method can be easily adapted to detect other allergic proteins in the food supply chain.Copyright © 2021 Elsevier B.V. All rights reserved.
About The Expert
Tabkrich Khumsap
Suwussa Bamrungsap
Vu Thi Thu
Loc Thai Nguyen
References
PubMed