Methicillin-resistant Staphylococcus aureus (MRSA) has become the most important pathogen of hospital-acquired (HA) or community-acquired (CA) infections. However, it is unclear of the cytokines responsible for pathological hyper-inflammation in sepsis related cytokine storm for MRSA infection. In this study, we selected typical HA-MRSA strain (YNSA163: ST239-t030-SCCmecⅢ) and two CA-MRSA isolates (YNSA7: ST59-t439-SCCmecⅣa and YNSA53: ST59-t437-SCCmecⅤb) from our previous research, infected on BALB/c mice, and analyzed the cytokine storm patterns during infection process. The animal experiments revealed the most serious lethal effect on BALB/c mice caused by YNSA7 strain infection, followed by YNSA53, and no BALB/c mice died for YNSA163 infection. Histopathological analyses revealed that lung was the most seriously damaged organs, followed by spleen and kidney, especially for CA-MRSA infection. The severe inflammatory reactions, tissue destruction, and massive exudation of inflammatory mediators and cells could be identified in CA-MRSA strains infected mice. Interleukin-6 (IL-6) and IL-10 were both highly expressed in spleen and lung of YNSA7 and YNSA53 dead cases compared with YNSA53 survived and YNSA163 cases, which demonstrated cytokine storm pattern for CA-MRSA strains infection. The results of IL-6 intervention experiment verified that the enhanced IL-6 secretion was responsible for the host lethality of YNSA7 infection. RNA-sequencing results among three MRSA isolates indicated most of the differentially expressed genes referred to cellular process, metabolism and genetic information processing of bacteria. Specifically, clpP, chp chemotaxis inhibit, fnbB, pathogencity island protein and virulence associated protein E were highly expressed in YNSA7 strain. In general, CA-MRSA strains provoked cytokine storm on BALB/c mice led to severe infection and lethality, the up-regulated of some virulence genes might play important role in pathogenesis.
Copyright © 2021 Elsevier Ltd. All rights reserved.

Author