Glycation of proteins leading to the formation of advanced glycation end products (AGEs) has been demonstrated to contribute to the pathogenesis of several diseases. Irisin is a clinically significant protein, putatively involved in obesity, diabetes, and neurological disorders. This study aimed to monitor the methyl-glyoxal (MG) induced AGEs and aggregate formation of irisin, as a function of time, employing multispectroscopic and microscopic approaches. ANS fluorescence suggested a molten globule-like state on Day 6, followed by the formation of irisin AGEs adducts, as confirmed by AGE-specific fluorescence. Glycation of irisin led to aggregate formation, which was characterized by Thioflavin T fluorescence, CD spectroscopy, and microscopic studies. These aggregates were confirmed by exploiting fluorescence microscopy, confocal, and transmission electron microscopy. Molecular docking was performed to determine the crucial residues of irisin involved in irisin-MG interaction. Usually, MG is present in trace amounts as a metabolic by-product in the body, which is found to be elevated in diseased conditions viz. diabetes and Alzheimer’s disease. This study characterized the AGEs and aggregates of clinically important protein, irisin; and since MG level has been found to be increased in various pathological conditions, this study provides a clinical perspective. There is a possibility that elevated MG concentrations might glycate irisin resulting in reduced irisin levels as reported in pathological conditions. However, further investigations are required to prove it.
© 2022 Wiley Periodicals LLC.

Author