Pulmonary metastasis of breast cancer is the major cause of deaths of breast cancer patients, but the effective treatment of pulmonary metastases is still lacking at present. Herein, a degradable biomimetic DNAzyme biocapsule is developed with the poly(ethylenimine) (PEI)-DNAzyme complex encapsulated in a Mn/Zn-coordinated inositol hexaphosphate (IP6) capsule modified with the cRGD targeting peptide for high-efficiency gene therapy of both primary and pulmonary metastatic breast tumors. This DNAzyme biocapsule is degradable inside acidic lysosomes, leading to the release of DNAzyme and abundant Mn/Zn for catalytic cleavage of EGR-1 mRNA. We find that PEI promotes the lysosomal escape of the released DNAzyme. Both in vitro and in vivo experiments demonstrate the apparent downregulation of EGR-1 and Bcl-2 protein expression after treatment with the DNAzyme biocapsule, thereby inducing apoptotic death of tumor cells. We further verify that the DNAzyme biocapsule exhibits potent therapeutic efficacy against both primary and pulmonary metastatic breast tumors with significant inhibition of peri-pulmonary metastasis. This study provides a promising effective strategy for constructing degradable DNAzyme-based platforms with self-supply of abundant metal ion cofactors for high-efficiency gene therapy of metastatic breast cancer.