The diffusion of electronic health records collecting large amount of clinical, monitoring, and laboratory data produced by intensive care units (ICUs) is the natural terrain for the application of artificial intelligence (AI). AI has a broad definition, encompassing computer vision, natural language processing, and machine learning, with the latter being more commonly employed in the ICUs. Machine learning may be divided in supervised learning models (i.e., support vector machine [SVM] and random forest), unsupervised models (i.e., neural networks [NN]), and reinforcement learning. Supervised models require labeled data that is data mapped by human judgment against predefined categories. Unsupervised models, on the contrary, can be used to obtain reliable predictions even without labeled data. Machine learning models have been used in ICU to predict pathologies such as acute kidney injury, detect symptoms, including delirium, and propose therapeutic actions (vasopressors and fluids in sepsis). In the future, AI will be increasingly used in ICU, due to the increasing quality and quantity of available data. Accordingly, the ICU team will benefit from models with high accuracy that will be used for both research purposes and clinical practice. These models will be also the foundation of future decision support system (DSS), which will help the ICU team to visualize and analyze huge amounts of information. We plea for the creation of a standardization of a core group of data between different electronic health record systems, using a common dictionary for data labeling, which could greatly simplify sharing and merging of data from different centers.Thieme. All rights reserved.
About The Expert
Massimiliano Greco
Pier F Caruso
Maurizio Cecconi
References
PubMed