Age-related eye disorders are chronic diseases that affect millions of people worldwide. They cause visual impairment and, in some cases, irreversible blindness. Drug targeting to the retina is still a challenge due to the difficulties with drug distribution, crossing eye barriers, and reaching intraocular tissues in an effective therapeutic concentration. Although intravitreal injections can directly deliver drugs to the posterior segment of the eye, it remains an invasive technique and leads to several side effects. Conventional formulations such as emulsions, suspensions, or ointments have been related to frequent instillation and inability to reach intraocular tissues. New drug delivery systems and medical devices have also been designed. Nevertheless, these treatments are not always effective and sometimes require the presence of a specialist for the administration of the dose. Therefore, treatments for age-related ocular diseases remain as one of the major unmet clinical needs to manage these widespread eye conditions. Nanotechnology may become the adequate tool for developing effective and non-invasive therapies suitable for self-administration. In this review, we discuss emerging therapeutic options based on nanoengineering of cyclodextrin nanocarriers for the treatment of age-related eye disorders, including their pathophysiology, pharmacological options, and feasibility of clinical translation.
Copyright © 2021. Published by Elsevier B.V.

Author