Susceptibility-weighted imaging (SWI) is crucial for the characterization of intracranial hemorrhage and mineralization, but has the drawback of long acquisition times. We aimed to propose a deep learning model to accelerate SWI, and evaluate the clinical feasibility of this approach.
A complex-valued convolutional neural network (ComplexNet) was developed to reconstruct high-quality SWI from highly accelerated k-space data. ComplexNet can leverage the inherently complex-valued nature of SWI data and learn richer representations by using complex-valued network. SWI data were acquired from 117 participants who underwent clinical brain MRI examination between 2019 and 2021, including patients with tumor, stroke, hemorrhage, traumatic brain injury, etc. Reconstruction quality was evaluated using quantitative image metrics and image quality scores, including overall image quality, signal-to-noise ratio, sharpness, and artifacts.
The average reconstruction time of ComplexNet was 19 ms per section (1.33 s per participant). ComplexNet achieved significantly improved quantitative image metrics compared to a conventional compressed sensing method and a real-valued network with acceleration rates of 5 and 8 (p 0.05) at both acceleration rates. Furthermore, ComplexNet showed comparable diagnostic performance to the fully sampled SWI for visualizing a wide range of pathology, including hemorrhage, cerebral microbleeds, and brain tumor.
ComplexNet can effectively accelerate SWI while providing superior performance in terms of overall image quality and visualization of pathology for routine clinical brain imaging.
• The complex-valued convolutional neural network (ComplexNet) allowed fast and high-quality reconstruction of highly accelerated SWI data, with an average reconstruction time of 19 ms per section. • ComplexNet achieved significantly improved quantitative image metrics compared to a conventional compressed sensing method and a real-valued network with acceleration rates of 5 and 8 (p < 0.001). • ComplexNet showed comparable diagnostic performance to the fully sampled SWI for visualizing a wide range of pathology, including hemorrhage, cerebral microbleeds, and brain tumor.

© 2022. The Author(s), under exclusive licence to European Society of Radiology.

Author