The definition of partial resuscitative endovascular balloon occlusion of the aorta (pREBOA) is not yet determined and clinical markers of the degree of occlusion, metabolic effects and end-organ injury that are clinically monitored in real time are lacking. The aim of the study was to test the hypothesis that end-tidal carbon dioxide (ETCO) targeted pREBOA causes less metabolic disturbance compared to proximal systolic blood pressure (SBP) targeted pREBOA in a porcine model of hemorrhagic shock.
Twenty anesthetized pigs (26-35 kg) were randomized to 45 min of either ETCO targeted pREBOA (pREBOA, ETCO 90-110% of values before start of occlusion, n = 10) or proximal SBP targeted pREBOA (pREBOA, SBP 80-100 mmHg, n = 10), during controlled grade IV hemorrhagic shock. Autotransfusion and reperfusion over 3 h followed. Hemodynamic and respiratory parameters, blood samples and jejunal specimens were analyzed.
ETCO was significantly higher in the pREBOA group during the occlusion compared to the pREBOA group, whereas SBP, femoral arterial mean pressure and abdominal aortic blood flow were similar. During reperfusion, arterial and mesenteric lactate, plasma creatinine and plasma troponin concentrations were higher in the pREBOA group.
In a porcine model of hemorrhagic shock, ETCO targeted pREBOA caused less metabolic disturbance and end-organ damage compared to proximal SBP targeted pREBOA, with no disadvantageous hemodynamic impact. End-tidal CO should be investigated in clinical studies as a complementary clinical tool for mitigating ischemic-reperfusion injury when using pREBOA.
© 2023. The Author(s).