Therapeutic angiogenesis with mesenchymal stem cells (MSCs) is promising for the clinical treatment of peripheral artery disease (PAD). However, the heterogeneous proangiogenic nature of MSCs is a key challenge in developing more effective treatments with MSCs for therapeutic angiogenesis purposes. Here, we propose to enhance the therapeutic function of human placenta-derived MSCs (hP-MSCs) in hindlimb ischemia therapy by using nitric oxide (NO)-releasing chitosan hydrogel (CS-NO). Our data showed that the co-transplantation of CS-NO hydrogel with hP-MSCs remarkably improved the grafting of hP-MSCs and ameliorated the functional recovery of ischemic hindlimbs. Moreover, we found that the neovascularization of damaged hindlimbs was significantly increased after co-transplanting CS-NO hydrogel and hP-MSCs, as confirmed by bioluminescence imaging (BLI). Further analysis revealed an endothelial-like status transformation of hP-MSCs in the presence of NO, which was identified as a potential mechanism contributing to the enhanced endothelium-protective and proangiogenic capacities of hP-MSCs that promote angiogenesis in mouse models of hindlimb ischemia. In conclusion, this study provides a promising approach for using NO hydrogel to improve the proangiogenic potency of MSCs in ischemic diseases, and the strategy used here facilitates the development of controlled-release scaffolds for enhancing the therapeutic efficiency of MSCs in angiogenic therapy.Copyright © 2020. Published by Elsevier Ltd.
About The Expert
Kaiyue Zhang
Xiaoniao Chen
Huifang Li
Guowei Feng
Yan Nie
Yongzhen Wei
Nana Li
Zhibo Han
Zhongchao Han
Deling Kong
Zhikun Guo
Qiang Zhao
Zongjin Li
References
PubMed