As cancer grows, it evolves. Individual cells become more aggressive and break away to flow through the body and spread to distant areas.
What if there were a way to find those early aggressors? How are they different from the rest of the cells? And more importantly: Is there a way to stop them before they spread?
These questions drove a team of researchers at the University of Michigan Comprehensive Cancer Center and Michigan Engineering to develop a tiny device designed to solve these big questions.
“It’s especially important to be able to capture those leader cells and understand their biology — why are they so successful, why are they resistant to traditional chemotherapy and how can we target them selectively?” says study author Sofia Merajver, M.D., Ph.D., scientific director of the Breast Oncology Program at the University of Michigan Comprehensive Cancer Center.
“Microfluidic devices are helping us understand biology that was previously not accessible,” she says.
The problem with existing microfluidic devices is that the cells don’t last long within them. Devices typically lend themselves to brief experiments of several days. But the characteristics of cancer cells change over time.
Related Articles
- Blood Test Can Predict Early Lung Cancer Prognosis
- New Mobile App Can Easily Screen for Pancreatic Cancer By Taking a Selfie
- Outdoor Nighttime Light Exposure Linked to Breast Cancer Risk
- Progress Made on Genetic Test for Anal Cancer
“A lot of tumor processes like invasion and resistance don’t happen overnight. Our goal was to track the long-term evolution of invasion,” says lead study author Koh Meng Aw Yong, Ph.D., a postdoctoral fellow in Merajver’s lab. “We cannot look at just a certain time point, like in a three-day experiment. That might not represent what’s happening in the body over time.”
So the team developed a new fluidic device to allow them to cultivate cells for longer periods of time. Researchers found the device was stable up to at least three weeks in culture. Their results are published in Scientific Reports.
The cells look like a thin milky line in a chamber that’s smaller than a pillbox. They are actually suspended in three dimensions, unlike typical fluidic devices that capture cells in two dimensions. It allows researchers to feed the cancer cells into the device with very minimal disturbance or change to the cells.
The device consists of three tiny molded channels through which cells flow. The cells are fed into one channel. Fluid flows through a parallel channel to provide pressure and flow without disturbing the culture. The flow of fluid through the outer channel mimics what happens with the body’s capillaries.