This study delves into the molecular mechanisms of long non-coding RNAs (lncRNAs) in recurrent spontaneous abortion (RSA) by analyzing differential expression datasets and constructing a regulatory network involving lncRNA, miRNA, and mRNA. The findings identify potential biomarkers and shed light on altered genes contributing to RSA pathogenic mechanisms.
This study investigated the molecular mechanisms of long non-coding RNAs (lncRNAs) in RSA using the lncRNA-miRNA-mRNA regulatory network.
The present study obtained expression datasets of long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), and microRNAs (miRNAs) from blood samples of individuals with unexplained recurrent spontaneous abortion (RSA) and healthy controls. Differentially expressed lncRNAs (DELs), mRNAs (DEMs), and miRNAs (DEmiRs) were identified. A regulatory network comprising lncRNA, miRNA, and mRNA was constructed, and Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to analyze the biological functions of DEM. Also, a protein-protein interaction (PPI) network was made and key genes were identified.
A total of 57 DELs, 212 DEmiRs, and 301 DEMs regarding RSA were identified. Later analysis revealed a lncRNA-miRNA-mRNA network comprising nine lncRNAs, 14 miRNAs, and 65 mRNAs. Then, the ceRNA network genes were subjected to functional enrichment and pathway analysis, which showed their association with various processes, such as cortisol and thyroid hormone synthesis and secretion, human cytomegalovirus infection, and parathyroid hormone synthesis. In addition, ten hub genes (ITGB3, GNAI2, GNAS, SRC, PLEC, CDC42, RHOA, RAC1, CTNND1, and FN1) were identified based on the PPI network results.
In summary, the outcomes of our study provided some data regarding the alteration genes involved in RSA pathogenic mechanism via the lncRNA-miRNA-mRNA network and reveal the possibility of identifying new lncRNAs and miRNAs as promising molecular biomarkers.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.