High throughput gene expression profiling is a valuable tool in providing insight into the molecular mechanism of human diseases. Hypoxia- and lactate metabolism-related genes (HLMRGs) are fundamentally dysregulated in sepsis and have great predictive potential. Therefore, we attempted to build an HLMRG signature to predict the prognosis of patients with sepsis.
Three publicly available transcriptomic profiles of peripheral blood mononuclear cells from patients with sepsis (GSE65682, E-MTAB-4421 and E-MTAB-4451, total n = 850) were included in this study. An HLMRG signature was created by employing Cox regression and least absolute shrinkage and selection operator estimation. The CIBERSORT method was used to analyze the abundances of 22 immune cell subtypes based on transcriptomic data. Metascape was used to investigate pathways related to the HLMRG signature.
We developed a prognostic signature based on five HLMRGs (ERO1L, SIAH2, TGFA, TGFBI, and THBS1). This classifier successfully discriminated patients with disparate 28-day mortality in the discovery cohort (GSE65682, n = 479), and consistent results were observed in the validation cohort (E-MTAB-4421 plus E-MTAB-4451, n = 371). Estimation of immune infiltration revealed significant associations between the risk score and a subset of immune cells. Enrichment analysis revealed that pathways related to antimicrobial immune responses, leukocyte activation, and cell adhesion and migration were significantly associated with the HLMRG signature.
Identification of a prognostic signature suggests the critical role of hypoxia and lactate metabolism in the pathophysiology of sepsis. The HLMRG signature can be used as an efficient tool for the risk stratification of patients with sepsis.
© 2023. BioMed Central Ltd., part of Springer Nature.