This study aimed to determine whether pathological changes in the bone marrow cause Osteoarthritis (OA) pain based on magnetic resonance imaging (MRI), immunohistochemistry, and electrophysiology.
Adjuvant-induced arthritis (AIA) was achieved by injecting 150 μL of complete Freund’s adjuvant into the right knee joints of male Sprague-Dawley rats. AIA rats were compared with saline-injected rats.
AIA significantly induced mechanical hyperalgesia and spontaneous pain in the right hind paw 1-14 days after induction. Intratibial injection of 50 μL of 1 % lidocaine significantly suppressed AIA-induced mechanical hyperalgesia (p = 0.0001) and spontaneous pain (p = 0.0006) 3 days after induction. In T2-weighted MRI, AIA induced high-signal intensity within the proximal tibial metaphysis, and the mean T2 values in this area significantly increased on days 3 (p = 0.0043) and 14 (p = 0.0012) after induction. AIA induced intraosseous edema and significantly increased the number of intraosseous granulocytes on days 3 (p < 0.0001) and 14 (p < 0.0001) after induction. The electrophysiological study on days 3-7 after induction showed significantly increased spontaneous firing rates (p = 0.0166) and evoked responses to cutaneous stimuli (brush, p < 0.0001; pinching, p = 0.0359) in the right hind paw plantar surface and intratibial stimuli (p = 0.0002) in wide-dynamic-range neurons of the spinal dorsal horn.
Intraosseous changes caused by OA induce hypersensitivity in the sensory afferents innervating bone marrow may be involved in OA pain. Novel bone marrow-targeted therapies could be beneficial for treating OA pain.
Copyright © 2023. Published by Elsevier Inc.