To demonstrate an updated approach for deriving planning target volume (PTV) margins for a patient population treated with volumetric image-guided radiotherapy.
The approach uses a semi-automated workflow within commercial radiotherapy applications that combines dose accumulation with the bidirectional local distance (BLD) metric. The patient cohort is divided into derivation and validation datasets. For each patient in the derivation dataset, a treatment plan is generated with a 0-mm PTV margin (the idealized treatment scenario without the influence of the standard margin). Deformable image registration enabled dose accumulation of these zero-margin plans. PTV margins are derived by using the BLD to calculate the geometric extent of underdosed regions of the clinical target volume (CTV). The PTV margin is validated by ensuring the specified CTV coverage criterion is met when the margin is applied to the validation dataset.
The methodology was applied to two cohorts: 40 oropharyngeal cancer patients and 50 early-stage breast cancer patients. Ten patients from each cohort were used for validation. PTV margins derived for the oropharyngeal and early-stage breast cancer patient cohorts were 3 and 5-mm, respectively, and ensure that 95% of the prescription dose is delivered to 98% of the CTV for 90% of patients. Dose accumulation showed that the CTV coverage criterion was achieved for at least 90% of patients when the margins were applied.
This methodology can be used to derive appropriate PTV margins for realistic treatment scenarios and any disease site, which will improve our understanding of patient outcomes.

Creative Commons Attribution license.

Author