Omicron, the most heavily mutated SARS-CoV-2 variant so far, is highly resistant to neutralizing antibodies, raising unprecedented concerns about the effectiveness of antibody therapies and vaccines . We examined whether sera from individuals who received two or three doses of inactivated vaccine, could neutralize authentic Omicron. The seroconversion rates of neutralizing antibodies were 3.3% (2/60) and 95% (57/60) for 2- and 3-dose vaccinees, respectively. For three-dose recipients, the geometric mean neutralization antibody titre (GMT) of Omicron was 16.5-fold lower than that of the ancestral virus (254). We isolated 323 human monoclonal antibodies (mAbs) derived from memory B cells in 3-dose vaccinees, half of which recognize the receptor binding domain (RBD) and show that a subset of them (24/163) neutralize all SARS-CoV-2 variants of concern (VOCs), including Omicron, potently. Therapeutic treatments with representative broadly neutralizing mAbs were highly protective against SARS-CoV-2 Beta and Omicron infections in mice. Atomic structures of the Omicron Spike in complex with three types of all five VOC-reactive antibodies defined the binding and neutralizing determinants and revealed a key antibody escape site, G446S, that confers greater resistance to one major class of antibodies bound at the right shoulder of RBD through altering local conformation at the binding interface. Our results rationalize the use of 3-dose immunization regimens and suggest that the fundamental epitopes revealed by these broadly ultrapotent antibodies are a rational target for a universal sarbecovirus vaccine.© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
About The Expert
Kang Wang
Zijing Jia
Linlin Bao
Lei Wang
Lei Cao
Hang Chi
Yaling Hu
Qianqian Li
Yinan Jiang
Qianhui Zhu
Yongqiang Deng
Pan Liu
Nan Wang
Lin Wang
Min Liu
Yurong Li
Boling Zhu
Kaiyue Fan
Wangjun Fu
Peng Yang
Xinran Pei
Zhen Cui
Lili Qin
Pingju Ge
Jiajing Wu
Shuo Liu
Yiding Chen
Weijin Huang
Cheng-Feng Qin
Youchun Wang
Chuan Qin
Xiangxi Wang
References
PubMed