To evaluate the effect of scleral crosslinking (SXL) on slowing experimental progressive myopia in tree shrew eyes using sub-Tenon’s injections of genipin (GEN) at different concentrations and number of injections.
Three or five sub-Tenon’s injections of GEN at 0 mM (sham), 10 mM, or 20 mM were performed in one eye every other day starting at 18 days of visual experience. Form deprivation (FD) myopia was induced in the injected eye between 24 and 35 days of visual experience; the fellow eye served as control. Tree shrews were randomly assigned to five experimental groups: FD (n = 8); FD + 5 × sham injections (n = 6); FD + 3 × GEN injections at 10 mM (n = 6) and 20 mM (n = 6); and FD + 5 × GEN injections at 20 mM (n = 6). Refractive state and ocular dimensions were measured daily.
Compared with the FD group, the sham-injected group showed a transient effect on slowing vitreous chamber elongation. With increasing GEN dose, SXL had an increasing treatment effect on slowing vitreous chamber elongation and myopia progression. In addition, SXL led to a dose-dependent shortening of the aqueous chamber depth and corneal thickening. Lens thickening was observed in the group with the highest concentration.
We have shown that SXL using GEN can slow axial elongation and myopia progression in tree shrews. The extent of this treatment effect was dose dependent. Several unexpected effects were observed (corneal thickening, decrease of the anterior chamber depth, and lens thickening), which require further optimization of the GEN delivery approach before clinical consideration.
The results of this preclinical study suggest that scleral crosslinking using genipin can slow myopia progression.

Author