Three Gorges Dam (TGD) is the largest hydroelectric construction in the world, and its potential impacts on the ecological environment and human health risks have invoked considerable global concern. However, as a mercury (Hg) sensitive system, limited work was conducted on the Hg exposure level of local residents around the Three Gorges Reservoir (TGR). Thus, 540 human hair samples and 22 species of local food samples were collected to assess the Hg exposure and human health risk to the residents located in the Three Gorges Reservoir Region (TGRR) and to investigate their dietary exposure to Hg. The results showed that the geometric mean concentrations of total mercury (THg) and methylmercury (MeHg) in hair were 0.42 ± 0.43 μg g and 0.23 ± 0.32 μg g, respectively, lower than the reference level (1.0 μg g) recommended by the United States Environmental Protection Agency (US EPA), indicating a low level Hg exposure for residents around the TGR. No significant difference in the accumulation of Hg in hair between the gender subgroups was observed, whereas age difference, smoking and alcohol drinking behavior, and fish consumption frequency were significant predictors of hair Hg level. Besides, THg and MeHg of all the investigated food samples did not exceed the corresponding Chinese national standard. The average probable daily intakes (PDIs) of THg and MeHg were 0.032 μg kg day and 0.007 μg kg day, which were obviously below the recommended values of 0.57 μg kg day and 0.1 μg kg day, respectively. The cereal (mainly rice) contribution of THg (76.0%) and MeHg (74.4%) intakes to the local residents around the TGR was much higher than that of fish (10.7% and 22.9%, respectively) due to the considerable rice consumption. Overall, residents around the TGR were at a low Hg exposure and rice consumption was the major pathway for Hg exposure.Copyright © 2021 Elsevier Ltd. All rights reserved.
About The Expert
Qing Xie
Yongmin Wang
Shouying Li
Cheng Zhang
Xiaosong Tian
Nan Cheng
Yongjiang Zhang
Dingyong Wang
References
PubMed