Familial exudative vitreoretinopathy (FEVR) is a severe retinal vascular disease that causes blindness. FEVR has been linked to mutations in several genes associated with inactivation of the Norrin/β-catenin signaling pathway, but these account for only approximately 50% of cases. We report that mutations in CTNNA1 (α-catenin) cause FEVR by overactivating the β-catenin pathway and disrupting cell adherens junctions. Three heterozygous mutations in CTNNA1 (p.F72S, p.R376Cfs*27 and p.P893L) were identified by exome-sequencing. We further demon-strated that FEVR-associated mutations led to overactivation of Norrin/β-catenin signaling due to impaired protein interactions within the cadherin/catenin complex. The clinical features of FEVR were reproduced in mice lacking Ctnna1 in vascular endothelial cells (ECs) or with overactivat-ed β-catenin signaling by an EC-specific gain-of-function allele of Ctnnb1. In isolated mouse lung endothelial cells, both CTNNA1-P893L and F72S mutants failed to rescue either the dis-rupted F-ACTIN arrangement or VE-Cadherin and CTNNB1 distribution. Moreover, we discov-ered that compound heterozygous Ctnna1 F72S and a deletion allele could cause similar pheno-type. Furthermore, a LRP5 mutation, which activates Norrin/β-catenin signaling, was identified in a FEVR family and the corresponding knock-in mice exhibited partial FEVR-like phenotype. Our study demonstrates that precise regulation of β-catenin activation is critical for retinal vascu-lar development and provides new insights into the pathogenesis of FEVR.

Author