The development of irreversible airway obstruction (IRAO) in asthma is related to lung/airway inflammatory and structural changes whose characteristics are likely influenced by exposure to tobacco smoke.
To investigate the interplay between airway and lung structural changes, airway inflammation, and smoking exposure in asthmatics with IRAO.
We studied asthmatics with IRAO who were further classified according to their smoking history, those with ≥20 pack-years of tobacco exposure (asthmatics with smoking-related IRAO [AwS-IRAO]) and those with <5 pack-years of tobacco exposure (asthmatics with nonsmoking-related IRAO [AwNS-IRAO]). In addition to recording baseline clinical and lung function features, all patients had a chest computed tomography (CT) from which airway wall thickness was measured and quantitative and qualitative assessment of emphysema was performed. The airway inflammatory profile was documented from differential inflammatory cell counts on induced sputum.
Ninety patients were recruited (57 AwS-IRAO and 33 AwNS-IRAO). There were no statistically significant differences in the extent of emphysema and gas trapping between groups on quantitative chest CT analysis, although Pi10, a marker of airway wall thickness, was significantly higher in AwS-IRAO (p = 0.0242). Visual analysis showed a higher prevalence of emphysema (p = 0.0001) and higher emphysema score (p < 0.0001) in AwS-IRAO compared to AwNS-IRAO and distribution of emphysema was different between groups. Correlations between radiological features and lung function were stronger in AwS-IRAO. In a subgroup analysis, we found a correlation between airway neutrophilia and emphysematous features in AwS-IRAO and between eosinophilia and both airway wall thickness and emphysematous changes in AwNS-IRAO.
Although bronchial structural changes were relatively similar in smoking and nonsmoking patients with asthma and IRAO, emphysematous changes were more predominant in smokers. However, neutrophils in AwS-IRAO and eosinophils in AwNS-IRAO were associated with lung and airway structural changes.
© 2020 S. Karger AG, Basel.
About The Expert
Louis-Philippe Boulet
Marie-Eve Boulay
Harvey O Coxson
Cameron J Hague
Joanne Milot
Johane Lepage
François Maltais
References
PubMed