The hyperpermeability of gut-vascular barrier (GVB) plays a role in gut-derived sepsis. The goal of this study was to evaluate if berberine might improve hepatic apolipoprotein M (ApoM) generation and raise plasma ApoM level to protect the compromised GVB.
The compromised GVB was induced by sepsis. Hepatic ApoM mRNA and phosphoenolpyruvate carboxykinase (PEPCK) mRNA and plasma ApoM level were assayed by qRT-PCR and ELISA, respectively. The permeability of intestinal capillary in vivo and of rat intestinal microvascular endothelial cells (RIMECs) in vitro was assayed by FITC-dextran. The blood glucose was detected by a glucometer. Plasma insulin, TNF-α and IL-1β were assayed by ELISA. The plasmalemma vesicle-associated protein-1 (PV1), β-catenin and occludin in RIMECs were assayed by Western blot.
Sepsis decreased hepatic ApoM mRNA and plasma ApoM level, but raised hepatic PEPCK mRNA and plasma glucose, insulin, TNF-α, and IL-1β levels. The increased vascular endothelial permeability was abrogated by recombinant rat ApoM in vivo or ApoM-bound S1P in vitro. ApoM-bound S1P decreased PV1 but increased occludin and β-catenin expression in LPS-treated RIMECs. Berberine in a dose-dependent manner raised hepatic ApoM mRNA and plasma ApoM level, but decreased septic hyperglycemia, insulin resistance and plasma TNF-α and IL-1β levels. Berberine reduced sepsis-induced PEPCK and TLR4 mRNA overexpression in the liver.
This study demonstrated berberine inhibited TLR4-mediated hyperglycemia, insulin resistance and proinflammatory molecule production, thereby increasing ApoM gene expression and plasma ApoM. Berberine protected the damaged GVB via modulation of ApoM/S1P pathway.
Copyright © 2018. Published by Elsevier Inc.
About The Expert
Yanning Li
Jun Zhou
Jiasheng Qiu
Zudong Huang
Weiwei Wang
Ping Wu
Aiwen Feng
References
PubMed