Elevated blood levels of C-reactive protein (CRP) are associated with both type 1 and type 2 diabetes and diabetic complications, such as diabetic retinopathy (DR). However, its pathogenic role in DR remains unknown. The present study aims to investigate the potential role of CRP in DR pathogenesis and explore its underlying mechanism.
Human CRP transgenic (hCRP-Tg) rats were employed for streptozotocin (STZ)-induced diabetic and oxygen-induced retinopathy (OIR) models. The retina function was monitored by electroretinography (ERG) and retinal thickness was measured by optical coherence tomography (OCT). TUNEL and cell death ELISA were performed to measure the apoptosis. Oxidative stress was detected by the measurement of reactive oxygen species (ROS) in cells and 3-Nitrotyrosine staining in tissue sections.
In non-diabetic condition, hCRP-Tg with elevated hCRP levels in the retinas demonstrated declined ERG responses and decreased retinal thickness. In STZ-induced diabetic condition, overexpression of hCRP deteriorated retinal neurodegeneration as shown by ERG and apoptosis assays. hCRP also exacerbated retinal leukostasis and acellular capillary formation induced by diabetes. In the OIR model, overexpression of hCRP exacerbated retinal neovascularization (NV). In retinal cell lines, hCRP treatment induced cell death and over-production of ROS. Furthermore, hCRP-induced overexpression of pro-inflammatory, pro-oxidative, and pro-angiogenic factors was associated with up-regulation of CD32 and the NF-κB signaling in the retinas.
Elevated hCRP levels play a pathogenic role in DR. Targeting the hCRP-CD32-NF-κB pathway may represent a novel therapeutic strategy for DR.
© 2020 The Author(s).
About The Expert
Fangfang Qiu
Xiang Ma
Young-Hwa Shin
Jianglei Chen
Qian Chen
Kelu Zhou
Wenjing Wu
Wentao Liang
Yalin Wu
Qing Song
Jian-Xing Ma
References
PubMed